
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01188), Washington, DC 20503 

1. AGENCY USE ONLY 
(Leave blank) 

2. REPORT DATE 
5/1/98 

3. REPORT TYPE AND DATES COVERED 
Final Technical 2/1/97-1/31/98 

4. TITLE AND SUBTITLE 
Genetic Analysis of Vertbrate Circadian Rhythmicity 

6. AUTHOR(S) 
Gregory M. Cahill, Ph.D. 

5. FUNDING NUMBERS 
F49620-97-1-0048 
2312/CS 

61102F 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

University of Houston 
4800 Calhoun Road 
Houston TX 77204 

AFRL-SR-BL-TR-98- 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Office of 
Scientific Research/NL 
110 Duncan Ave 
Boiling AFB, DC 20332 

11. SUPPLEMENTARY NOTES 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

19980722 036 
12a. DISTRIBUTION /AVAILABILITY STATEMENT 

Approved for public roleas® ? 
iUs'öribiition uaiiaitscl. 

12b. DISTRIBUTION 
CODE 

13. ABSTRACT (Maximum 200 Words) 

The goal of this project was to develop technology needed to identify 
vertebrate circadian clock genes. An understanding of basic molecular mechanisms of 
biological clocks is important in designing treatments of the performance deficits, 
sleep disorders and other problems associated with jet lag, shift work, and organic 
circadian clock disorders in humans. A novel automated image analysis system was 
developed to measure circadian locomotor rhythms. This system was used to measure 
behavioral rhythms in zebrafish, a vertebrate organism that is useful for large 
scale mutagenesis screens.  A screen for dominant mutations that alter the period of 
zebrafish locomotor rhythms was initiated, and 1500 animals with different 
mutagenized genomes were tested.  The progeny of 40 putative mutants are being 
tested to determine whether they carry authentic clock mutations. 

14. SUBJECT TERMS 
Circadian rhythms, Genetics 

15. NUMBER OF 
PAGES 21 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION 

OF REPORT 

18. SECURITY 
CLASSIFICATION 

OF THIS PAGE 

19. SECURITY 
CLASSIFICATION 

OF ABSTRACT 

20. LIMITATION OF 
ABSTRACT 

NSN 7540-01-280-5500 

DTIC OUALTT7 INSPECTED 5 
1 

Standard Form 298 (Rev. 2- 
89) 
Prescribed by ANSI Std. Z39-18 



Summary 

The goal of this project was to identify vertebrate circadian clock genes through mutational 

analysis of zebrafish circadian rhythm. The original proposal was for three years, and the specific 

aims included: 1) development of an automated image analysis method for measurement of 

locomotor activity rhythms; 2) a screen of 5,000 mutagenized individuals for dominant mutations; 

3) genetic mapping of confirmed clock mutations; 4) characterization of mutant phenotypes, and 5) 

determination of the effects of visual system mutants on circadian rhythms. In the one year that 

was funded by the AFOSR, we accomplished the first specific aim and initiated the second specific 

aim. Specific aims 3-5 will be pursued with funding from other sources. 

Publications 

Begay,V., Falcon, J., Cahill, G.M., Klein, D.C. and Coon.S.L.  1998. Transcripts 

Encoding Two Melatonin Synthesis Enzymes in the Teleost Pineal Organ: Circadian Regulation in 

Pike and Zebrafish but not in Trout. Endocrinology:   139:905-912 

Klein, D.C, Coon, S.L., Roseboom, P.H., Weller, J.L., Bernard, M., Gastel, J.A., 

Zatz, M., Iuvone, P.M., Rodriguez, I.R., Begay, V., Falcon, J., Cahill, G.M., Cassone, V.M. 

and Baler, R. 1997. The melatonin rhythm-generating enzyme: Molecular regulation of serotonin 

N-acetyltransferase in the pineal gland. Rec. Prog. Horm. Res. 52: 307-358 

Hurd, M.W., DeBruyne, J., Straume, M. and Cahill, G.M. Circadian rhythms of 

locomotor activity in zebrafish. In press, Physiology and Behavior. 

Manuscript submitted 

Cahill, G.M., Hurd, M.W. and Batchelor, M.M. Circadian rhythmicity in the locomotor 

activity of larval zebrafish. Submitted, Neuroreport.. 

Published Abstract 

Hurd, M.W., DeBruyne, J, and Cahill, G.M. 1997 Circadian rhythms of locomotor 

behavior in zebrafish. Soc. Neurosci. Abstr. 23:1322. 



Progress on Specific Aims 

Specific Aim 1:   Development of an automated video image analysis for 

measurement of circadian behavioral rhythms in larval zebrafish.  This aim has been 

completed and reported in a manuscript submitted to the journal Neuroreport. The methods and 

results are described below. This project entailed development of a computer macro program, 

entitled Swimming Macro, written in Analytical Language for Images, and run within the the 

Optimas image processing program. The code is included in the appendix. 

Methods: Specific Aim 1 

Animals: The zebrafish used in these studies were of an AB strain that was obtained from 

the University of Oregon. They were raised to 10 days of age in a 14:10 light:dark cycle at 

28.5°C, and they were fed Paramecium through the day before activity recording began.   During 

activity recording they were housed individually in 0.75 ml wells. They were not fed during the 

130-hr recording period. All protocols were reviewed and approved by the University of Houston 

Institutional Animal Care and Use Committee. 

Recording apparatus: Fish were housed individually in up to 100 cylindrical wells (0.75 

cm diam, 1 cm deep) drilled in a 10 X 10 grid in a 1.2 cm thick specimen plate made of translucent 

white polyethylene. A diffuse axial illuminator (Edmund Scientific, Barrington, NJ) placed above 

the wells provided even, infrared (>700 nm) illumination and eliminated reflection from the water 

surface. The wells were backlighted by a placing a mirror beneath the specimen plate; this 

enhanced the contrast of the fish relative to background. Images were collected from a CCD 

camera with a 28 mm lens, automatic gain control and shading correction (Hamamatsu Photonics, 

Hamamatsu, Japan). The specimen plate, illumination system and camera head were enclosed in a 

refrigerated incubator maintained at 24 ± 0.1°C. Monochrome images (640 X 480 pixels, 8 bit 

resolution) were captured by a Flashpoint 128 video card (Integral Technologies, Indianapolis, IN) 

in a computer with a Windows operating system and either a Pentium 166 or Pentium Pro II300 

processor (Intel, Santa Clara, CA). 



Data acquisition: Data were acquired automatically via Optimas (Seattle, WA) image 

analysis software, controlled by a macro written in Analytical Language for Images. The code fro 

this macro is inclluded in the appendix. Every 4 or 5 min, a series of 60 images was collected 

(1/sec) and stored in memory, then the distance that each fish moved in the series of images was 

measured. During set up of an experiment, the image frame was divided into rectangular cells 

enclosing each of the 100 wells, and a pixel value threshold that distinguished all of the fish from 

the lighter background was set.  The coordinates of the centroid of each fish were determined for 

each frame of the series, and from these data the path through which each fish moved in the series 

of images was plotted. The length of the path of each fish was measured and stored in a text file, 

and the images in memory were discarded before reinitiating the cycle. The analysis of a series of 

60 images of 100 fish required 2.5-4 min of processing time, depending on the microprocessor 

and version of Optimas that were used. 

Two types of errors in locating the coordinates of the fish were encountered with this 

system: 1) In some cases, a fish was not recognized because too few pixels crossed threshold. 

When no fish was recognized, the previous location of the fish was recorded (i.e. no movement). 

This occurred most often when fish were inactive near the bottom of the well, so this probably did 

not contribute much to noise in the records. 2) In other cases, more than one object was 

recognized in a well, either because the fish image crossed threshold in two or more separate 

locations, or because a background area crossed threshold. In these cases the mean of the 

coordinates of all object centroids was recorded. 

Experimental Design: Typically, behavioral recording began at the normal time of the light 

to dark transition on the tenth day post-fertilization and was continued for five to six days in 

constant infrared illumination. In another series of experiments, two groups of animals were 

exposed to opposite light cycles from five to ten days of age, and then they were monitored 

simultaneously in constant conditions to determine whether the recorded rhythms reflected the 

phase of the prior entraining light cycle. 



Data analysis: Data were plotted and analyzed with Chrono II software (T. Roenneberg, 

University of Munich). The path lengths recorded during each 30 min period of an experiment 

were averaged, then plotted as a function of time. For actogram plots and periodogram analysis, a 

26 h centered moving average was subtracted from the data to remove long term trends in overall 

activity levels. This results in positive values at times of peak activity, and negative values during 

troughs. In actograms, the positive values are plotted as a percent of the 26 hour mean, and 

negative values are omitted. Estimates of circadian period were determined by chi-square 

periodogram. 

Figure  1. Circadian activity rhythms of larval zebrafish in constant conditions. A-D, 

Continuous records of activity. E-H, double-plotted actograms derived from the activity records in 

A-D. A and E, averaged activity of 

100 fish during a five day 

experiment. B-D and F-H are 

records from 3 representative 

individuals to illustrate the range of 

activity patterns observed in that 

experiment. The light cycle prior to 

the experiment is indicated by the 

shaded (light) and black (dark) bars 

above the actograms. The 

actograms, which plot activity levels 

above the daily mean, emphasize that 

the fish were most active during the 

subjective day, and that the 

freerunning periods of the activity 

rhythms are longer than 24 hr. 

SSNNSNNN «NNNNNKS 

H. 
LA.. 

LA 

.-m*. 

^iL 
-iii. 

 . * T* * J* * i 

Days in constant conditions 
12 24 12 
Time of day (hrs) 

24 



Results: Specific Aim 1. 

The locomotor activity of larval zebrafish in constant conditions was rhythmic with an 

average freerunning circadian period of 25.6 h.  Examples of raw activity data and actograms for 

the average of a group of 100 fish and for 3 individuals are shown in Fig 1. Periodogram analysis 

indicated that over 95% of the animals expressed significant periodicity in the range of 23-28 hours 

in each of 5 experiments. The activity of every rhythmic animal was highest during the subjective 

day, with an approximately twofold difference between average trough and peak activity levels. A 

decrease in both trough and peak activity levels was observed over the course of the five day 

recording period in every experiment. Among experiments, average freerunning periods ranged 

from 25.2 to 26.1 hrs, and the within-experiment standard deviations in period ranged from 0.5 to 

1.0 hours. 

In order to ensure that the measured activity rhythms resulted from endogenous circadian 

rhythmicity, rather than some uncontrolled rhythmic variable in the environment or recording 

system, sibling groups of fish were raised in oppositely phased lightdark cycles, then activity of 

the two groups was monitored simultaneously in constant conditions. As shown in Fig. 2, the 

activity rhythms of the two groups of animals in constant conditions had opposite phases, with 

activity peaks occurring during the expected light period for each group. This demonstrates that 

the measured rhythms are driven by endogenous, entrainable circadian clocks, and can not be 

explained by extrinsic factors. 

All zebrafish tested under these conditions survived the five day recording period without 

food or water changes. Some were removed from the wells at the end of the recording period and 

raised. All of these developed normally and began to breed at two to three months of age. 

Conclusion: Specific Aim 1 

The locomotor activity of larval zebrafish is regulated by a light-entrainable circadian clock. 

The resulting activity rhythms in constant conditions are robust, with consistent freerunning 

periods and a consistent phase relative to the prior light cycle.   Activity rhythms of 100 individuals 

L 



can be monitored simultaneously by automated video image analysis. This system should provide 

the efficiency and precision necessary for identification and characterization of zebrafish circadian 

clock mutants. 

sssssssss       ssssssssss 
Figure 2. The phase of the zebrafish activity 

rhythm in constant conditions is determined by the 

preceding lightdark cycle. Double-plotted 

actograms of averaged activity from animals 

previously exposed to either a normal (A) or 

reversed (B) lightdark cycle, then monitored 

simultaneously (30 per group). The actograms 

are plotted on a 25.5 hr time scale, which 

approximates the freerunning periods of the 

rhythms. The light exposure during the 51 hours 

prior to placing the animals in constant conditions 

is indicated by the shaded bars above the graphs. 

The blank interval on Day 3 resulted from an 18 

hr interruption of data collection. 

0 12*75  "    25.5    "    12.75 '     25.5 
Time (hr) 

Specific Aim 2: Mutagenesis and screen for dominant mutations in zebrafish 

circadian clock genes. We have made significant progress on this aim. Behavioral rhythms 

from approximately 1,500 mutagenized have been recorded and analyzed. Forty putative mutants 

have been selected on the basis of lengthened or shortened period of the circadian behavioral 

rhythm. The progeny of these 40 putative mutants are being tested for genetic transmission of 

clock mutations. 

L 



Methods. Specific Aim 2 

Mutagenesis: Male zebrafish, 3-5 months old, were immersed 3-5 times for one hour in 3 

mM N-ethyl-N-nitrosourea (ENU) to mutagenize progonial sperm cells. After one month 

recovery, these animals were crossed with normal females. Each of the resulting progeny is 

expected to be heterozygous for a unique combination of mutant loci. 

Screening: Progeny of mutagenized males (Fls) were tested for changes in behavioral 

circadian rhythms by the method described under Specific Aim 1. Behavioral rhythms were 

measured for 5 days, and putative mutant individuals with freerunning periods shorter than 24 

hours or longer than 27 hours were selected and raised to breeding age. Progeny of these animals 

(F2s, 15-30 each) are then tested to determine whether the period defect segregated with a 1:1 

ratio. 

Results. Specific Aim 2 

To date, we have screened 1500 Fls. Forty of these animals that expressed circadian 

rhythms with long or short periods have been selected. The progeny of these mutants will be 

tested to determine whether the period changes are due to dominant mutations. 

Conclusions. Specific Aim 2 

The data to date indicate that it will be possible to identify circadian clock genes by 

mutational analysis in zebrafish. This component of the project is continuing with funding from 

another source. 



Appendix: 

Computer code for swimming macro. 

/*  
Tiüe 

Swimming.Mac 

By 
Matthew M. Batchelor 
Meyer Instruments, Inc. 
Houston, TX 

Support Software 
Minimize.Mac 
Optdlg.Oml 

Modification Log 
08-07-97: Originally based on TstDlg.Mac - MMB 

*/ 

// First, prevent recursive creation of this dialog 
If (IsObject ("SwimmingJiWndDlg")) { 

{ 
Beep(); 
If (! Prompt ("Recursive attempt to create dialog box detected!\r\n\r\nContinue?", 2)) 

Pause(); 
} 

} 

ChangeCursor (1);      // Make cursor into hourglass 

// VARIABLES used in the dialog box  
CHAR 

Swimming_Directory = MacroPathAndName[0, ]; // Save current directory 
INTEGER 

SwimmingJiWndDlg; // The window handle of the new dialog box 
BOOLEAN 

SwimmingJconOPTIMAS = FALSE; // Set TRUE to make OPTIMAS iconic 

CHAR 
Swimming_T109 = 
Swimming_T110 = " 
Swimming_T118 = 
Swimming_T141 = 
Swimming_T142 = 
Swimming_T143 = ", 
Swimming_T144 = "l", 
Swimming_T145 = "99", 
Swimming_T146 = "3", 
Swimming_T147 = "3", 
Swimming_T148 = Swimming_T144, 
Swimming_T149 = Swimming_T145, 



Swimming_T161 = ", 
Swimming_T162 = ", 
Swimming_T163 = ", 
Swimming_T999 = "; 

CHAR 
Swimming_ArithmeticOpsNames [,] = "; 

REAL 
Swimming_ROIWide; 

REAL 
Swimming_ROIHigh; 

INTEGER 
S wimming_NRows; 

INTEGER 
Swimming_NCols; 

REAL 
Swimming_SampleWide; 

REAL 
Swimming_SampleHigh; 

REAL 
Swimming_ROIImage [, ]; 

REAL 
Swimming_ROIAnalyze [, ]; 

Swimming_ROIImage = ROI; 
Swimming_ROIAnalyze = ROI; 

REAL 
Swimming_DisplaySuperMArCentroids [,,] = "; 

//If (!IsWindow ("Swimming_DisplaySuperMArCentroids")) 
// ViewBox ( Swimming_DisplaySuperMArCentroids , 0x0800); 

INTEGER 
Swimming_DataNoOfBlobs [ 10, 10, 60] = "; 

REAL 
Swimming_DataCentroid [ 10, 10, 60, 2] = "; 

REAL 
Swimming_DataLength [ 10, 10] = "; 

INTEGER 
Swimming_Row , 
Swimming_Col, 
Swimming_Img; 

CHAR 
Swimming_cFileName [, ]; 

INTEGER 

10 

L 



Swimming_cFileHandle; 

// Startup code — 

// Make OPTIMAS iconic ? 
if (SwimmingJconOPTimas) 
RunMacro (PathVariable : "macros/minimize.mac"); 

// Load the DLL that handles custom dialog boxes 
Swimming_hLib = LoadMacroLibrary( "optdlg.oml"); 

// Register function from windows which gives system tick count in msec 
// Swimming_hGTC = Register ("User", "GetTickCount", "%D"); 
// SwimmingJiGTC = Register ("Kernel32", "GetTickCount", "%D"); 

// FUNCTIONS used in the dialog box  

// Function to update information in the dialog box 
Define Swimming_Update () 

{ 
// Update ROI text 
Swimming_ROIWide = Swimming_ROIAnalyze [1,0]- Swimming_ROIAnalyze [0,0 

] 
Swimming_T109 = 

ToText ( Swimming_ROrWide , "%.2f"): 
" (": GetOrSetField (ActiveCalibration , 103 ):".)" 

Swimming_ROIHigh = Swimming_ROIAnalyze [0,1]- Swimming_ROIAnalyze [1,1 

Swimming_Tl 10 = 
ToText ( Swimming_ROIHigh , "%.2f"): 
" (": GetOrSetField (ActiveCalibration , 103 ):".)" 

// Update row and column variables 
FromText ( Swimming_T146 , Swimming_NRows ); 
FromText ( Swimming_T147 , Swimming_NCols ); 
Swimming_SampleWide = Swimming_ROIWide / (Real) Swimming_NCols ; 
Swimming_SampleHigh = Swimming_ROIHigh / (Real) Swimming_NRows ; 

// The init macro can do any special processing such as creating viewboxes 
Define SwimmingJnitMacro () 

{ 
// Call update function to start everything off right 
Swimming_Update (); 
} 

// Button to prompt for path, prefix and extension 
Define Swimming_B 119 () 

{ 
// Declare local variables 
Local Char TempPath [ ]; 
Local Char TempFileName [, ]; 

11 



// Initialize TempPath 
TempPath = 

FileSplitPath (ImageFile) [ 0, ]; 
TempPath := 

FileSplitPath (ImageFile) [ 1 , ]; 

// Prompt the user for the filename 
TempFileName = GetFileName (TempPath :"*.*", -2 , -1, TRUE); 

// Get file name (with error trap) 
If (TempFileName != FALSE) 

{ 
// Open the image indicated by the user 
Openlmage (TempFileName); 

// Remember the roi used by the image 
Swimming_ROIImage = ROI; 

// Update the dialog box text 
Swimming_T141 = FileSplitPath (TempFileName) [ 0 , ] 
Swimming_T141 := FileSplitPath (TempFileName) [ 1 , ] 
Swimming_T142 = FileSplitPath (TempFileName) [ 2 , ] 
Swimming_T142 = Swimming_T142 [ 0 .. 3 ]; 
Swimming_T143 = FileSplitPath (TempFileName) [ 3 , ] 

} 

// Button to load images into memory 
Define Swimming_B120 () 

{ 
// Declare local variables 
Local Char 

TempFileName; 
Local Char 

TempCycleC; 
Local Char 

TempImageC; 
Local Integer 

Start, 
End; 

// Initialize local variables 
FromText ( Swimming_T144 , Start); 
FromText ( Swimming_T145 , End); 

// Clear names array 
Swimming_ArithmeticOpsNames ="; 

// Update user info 
Swimming_Tl 18 = "Loading images into memory!"; 

// Load all images from with the current prefix, cycle, and extension 
// into the arithmetic ops buffer in sequential order 

12 



For (j = Start; j <= End ; j ++) 
{ 
For (i = 0; i < 99; i ++ ) 

{ 
// - Build the file name 

Swimming_T143; 

// Start with the path 
TempFileName = Swimming_T141; 

// Add the prefix 
TempFileName := Swimming_T142; 

//Add the Cycle 
If (j < 1000) 

TempCycleC = ToText (j); 
If (j < 100) 

TempCycleC = "0": ToText (j); 
If(j< 10) 

TempCycleC = "00": ToText (j); 
TempFileName := TempCycleC; 

// Add the Image 
If (i< 100) 

TempImageC = ToText (i); 
If (i< 10) 

TempImageC = "0": ToText (i); 
TempFileName := TempImageC; 

// Add the extension 
TempFileName := Swimming_T143; 

// If the file exists 
If ( OpenFile (TempFileName , 0x4000) != FALSE) 

{ 
// Put it on the arithmetic ops stack 
FileToList (TempFileName); 
// Remember the names on the stack 
Swimming_ArithmeticOpsNames ::= 

Swimming_T142 : TempCycleC : TempImageC : 

} 
} 

// Update user info 
Swimming_T118 = "Images from Cycle ": ToText (j):" loaded into memory!"; 
} 

// Update user info 
Swimming_Tl 18 = "Images loaded into memory!"; 
} 

// Button to playback images in memory 
Define Swimming_B121 () 

{ 
For (i = 0 ; i < GetShape ( Swimming_ArithmeticOpsNames ) [ 0 ]; i ++) 

{ 

13 



StatusBar = "Arithmetic Ops Copy of": Swimming_ArithmeticOpsNames [ i, ]; 
SelectROI (Swimming_ROIImage); 
ArithmeticOp ("Copy", Swimming_ArithmeticOpsNames [ i, ]); 
} 

} 

// Button to clear images in memory 
Define Swimming_B122 () 

{ 
For (i = 0 ; i < GetShape (Swimming_AnthmeticOpsNames) [ 0 ]; i ++) 

{ 
StatusBar = "Deleting ": Swimming_ArithmeticOpsNames [ i, ]; 

Deletelmage ( Swimming_ArithmeticOpsNames [ i, ]); 
} 

// Clear name array 
Swimming_ArithmeticOpsNames ="; 
} 

// Button to set region of interest 
Define Swimming_B123 () 

{ 
// Prompt user 
If (Prompt ("Use current ROI as Analysis ROI?", 2 )) 

{ 
// Remember this ROI 
Swimming_ROIAnalyze = ROI; 
} 
Else 
{ 
//Activate ROI tool 
SelectROI (); 
// Remember this ROI 
Swimming_ROIAnalyze = ROI; 
} 

// Call update function 
Swimming_Update (); 

// Button to test sample layout 
Define Swimming_B124 () 

{ 
// Clear existing overlaid screen objects 
ClearScreen (); 

SelectROI (Swimming_ROIAnalyze); 

// Turn off screen updated 
BeginOrEndUpdateBlock( TRUE); 

// Loop through the rows 
For (j = 0 ; j < Swimming_NRows ; j ++ ) 

{ 
// Loop through the columns 

14 



For (i = 0 ; i < Swimming_NCols ; i ++) 
{ 
// Create an area at the bounds of the ROIS 
CreateArea 

( 
( 
(ROI [ 0,0 ] + ((Real) i * Swimming_SampleWide)): 
(ROI [ 0 , 1 ] - ((Real) j * Swimming_SampleHigh)) 

( 
(ROI [ 0 , 0 ] + ((Real) i * Swimming_SampleWide )): 
(ROI [ 0 , 1 ] - ((Real) (j + 1) * Swimming_SampleHigh)) 

( 
(ROI [ 0 , 0 ] + ((Real) (i + 1) * Swimming_SampleWide)) 
( ROI [ 0 , 1 ] - ((Real) (j + 1) * Swimming_SampleHigh)) 

( 
(ROI [ 0 , 0 ] + ((Real) (i + 1) * Swimming_SampleWide)) 
(ROI [ 0 , 1 ] - ((Real) j * Swimming_SampleHigh)) 

); 
} 

} 
// Turn on updates and refresh everything 
BeginOrEndUpdateBlock( FALSE); 
} 

// Function to loop through the sample areas 
Define Swimming_SampleLoop () 

{ 
// Clear existing overlaid screen objects 

// ClearScreen (); 

// Loop through the rows 
For (j = 0 ; j < Swimming_NRows ; j ++) 

{ 
// Loop through the columns 
For (i = 0 ; i < Swimming_NCols ; i ++) 

{ 
// Create an ROI 
SelectROI 

( 
( 
( Swimming_ROIAnalyze [ 0 , 0 ] + ((Real) i * 

Swimming_SampleWide)): 
(Swimming_ROIAnalyze [ 0 ,1 ] - ((Real) j * 

Swimming_SampleHigh)) 
) 

( 

15 



(Swimming_ROIAnalyze [ 0,0 ] + ((Real) (i + 1) * 
Swimming_SampleWide)): 

( Swimming_ROIAnalyze [ 0 , 1 ] - ((Real) (j + 1) * 
Swimming_SampleHigh)) 

) 
); 

// Set global variables equal to loop counters 
Swimming_Row = j ; 
Swimming_Col = i; 

// Run the macro to process this ROI 
RunMacro (Swimming_Directory : "Process/Process.Mac"); 
} 

} 
} 

// Go Button to process images from disk 
Define Swimming_B 140 () 

{ 
// Declare local variables 
LOCAL INTEGER 

CycleStart, CycleEnd; 

// Initialize local variables 
FromText (Swimming_T148 , CycleStart); 
FromText (Swimming_T149 , CycleEnd); 

// Set up data extraction 
SetExport (Null, -2, FALSE); 
SetExport (mArCentroid, 1, TRUE); 
SetExport (ArCentroid, 1, TRUE); 
SetExport (mLnLength, 1, TRUE); 
SetExport (LnLength, 1, TRUE); 

// Initialize summary data vectors 
GLOBAL INTEGER 

Swimming_DataNoOfBlobs [ 10, 10, 60] = ""; 

GLOBAL REAL 
Swimming_DataCentroid [ 10, 10, 60, 2] = ""; 

GLOBAL REAL 
Swimming_DataLength [ 10, 10] = ""; 

// Loop through the requested cycles 
For (Cyclel = CycleStart; Cyclel <= CycleEnd ; Cyclel ++) 

{ 
// Reset the from and through numbers in the images from disk 
Swimming_T144 = ToText ( Cyclel); 
Swimming_T145 = ToText (Cyclel); 

// Clear overlaid screen objects 
ClearScreen (); 

16 



// Call the function which loads the images into memory 
Swimming_B120(); 

// Play back the stack in memory 
For (ii = 0 ; ii < GetShape (Swimming_ArithmeticOpsNames) [ 0 ]; ii ++) 

{ 
// Update user info 
S wimming_T 118 = 

"Processing Image Number ": 
ToText (ii): 
" of": 
ToText (GetShape (Swimming_ArithmeticOpsNames) [ 0 ]): 
M I It. 

*     ? 

StatusBar = "Arithmetic Ops Copy of": Swimming_ArithmeticOpsNames [ ii, ]; 
SelectROI (Swimming_ROHmage); 
ArithmeticOp ("Copy", Swimming_ArithmeticOpsNames [ ii, ]); 

BeginOrEndUpdateBlock (TRUE); 

SelectROI (Swimming_ROIAnalyze); 
Swimming_Img = ii; 
Swimming_SampleLoop (); 

BeginOrEndUpdateBlock (FALSE); 

} 

// Loop through the rows 
For (j = 0 ; j < Swimming_NRows ; j ++) 

{ 
// Loop through the columns 
For (i = 0 ; i < Swimming_NCols ; i ++ ) 

Swimming_Img , 0 .. 2 ]; 

} 

MultipleMode = FALSE; 
Local Real My_Points = Swimming_DataCentroid [ i, j, 0 

Temp_IDLine = CreateLine (My_Points); 
If (TempJDLine != FALSE ) 

{ 
Extract (); 
Swimming_DataLength [ i, j] = LnLength; 
} 
Else 
{ 
Swimming_DataLength [ i, j] = 0.; 
} 

MultipleMode = TRUE; 
} 

// If user opened data file send data to file 
If (Swimming_cFileName) 

17 



{ 
// Open data file 
Swimming_cFileHandle = OpenFile (Swimming_cFileName, 0x0001); 
// Move to end of file 
PositionFile (Swimming_cFileHandle , 0L, 2); 
// Send data to data file 

// — Column Headings 
If(CycleI==CycleStart) 

{ 
Swimming_cOutLine = 

"Col\t"; 
// Loop through the rows 
For (j = 0 ; j < Swimming_NRows ; j ++) 

{ 
// Loop through the columns 
For (i = 0 ; i < Swimming_NCols ; i ++ ) 

{ 
Swimming_cOutLine := 

ToText (i): "\t"; 
} 

} 
Swimmmg_cOutLine := 

"\r\n"; 
WriteFile (Swimming_cFileHandle, Swimming_cOutLine); 
} 

// — Row Headings 
If (Cyclel == CycleStart) 

{ 
Swimmmg_cOutLine = 

"Row\t"; 
// Loop through the rows 
For (j = 0 ; j < Swimming_NRows ; j ++ ) 

{ 
// Loop through the columns 
For (i = 0 ; i < Swimming_NCols ; i ++) 

{ 
Swimming_cOutLine := 

ToText (j):"\t"; 
} 

} 
Swimming_cOutLine := 

"\r\n"; 
WriteFile (Swimming_cFileHandle, Swimming_cOutLine); 

// - Length Data 
Swimming_cOutLine = 

Swimming_ArithmeticOpsNames [ Swimmingjmg , ]: "\t"; 
// Loop through the rows 
For (j = 0 ; j < Swimming_NRows ; j ++) 

{ 
// Loop through the columns 

18 



For (i = 0 ; i < Swimming_NCols ; i ++) 
{ 
Swimming_cOutLine := 

ToText (Swimming_DataLength [ i, j ]): "\t" 

} 
Swimming_cOutLine := 

"\r\n"; 
WriteFile (Swimming_cFileHandle, Swimming_cOutLine); 

// Close data file 
CloseFile (Swimming_cFileHandle); 
} 

// Call the function which clears the images in memory 
SwimrningJTl 18 = "Deleting Images from Stack!"; 
Swimming_B122(); 

} 

// Update user info 
SwimrningJTl 18 = "Finished Processing Images!"; 

} 

// Button to prompt for data file info 
Define Swimming_B157 () 

{ 
// Declare local variables 
Local Char TempPath [ ]; 

// Initialize TempPath 
TempPath = 

FileSplitPath (ImageFile) [ 0 , ]; 
TempPath := 

FileSplitPath (ImageFile) [ 1, ]; 

// Prompt the user for the filename 
TempFileName = GetFileName (TempPath : "*.*", TRUE , 1, FALSE); 

// Get file name (with error trap) 
If (TempFileName != FALSE) 

{ 
// Update the dialog box text 
Swimming_T161 = FileSplitPath (TempFileName) [ 0 , ]; 
Swimming_T161 := FileSplitPath (TempFileName) [ 1 , ]; 
Swimming_T162 = FileSplitPath (TempFileName) [ 2 , ]; 
Swimming_T163 = FileSplitPath (TempFileName) [ 3 , ]; 

Swimming_cFileName = TempFileName; 
// Open data file 
Swimming_cFileHandle = OpenFile (Swimming_cFileName, 0x0001); 
// Move to end of file 

19 



} 

PositionFile (Swimming_cFileHandle , OL, 2); 
// Send data to data file 
// Close data file 
CloseFile (Swimming_cFileHandle); 
} 

Define Swimming l_TerminateMacro () 
{ 
// Unload the dialog box library 
LoadMacroLibrary (S wimming_hLib); 

// If OPTIMAS was iconic, bring it back 
If (SwimmingJconOPTIMAS) 

RunMacro (PathVariable : "macros/maximize.mac"); 

// Wildcard delete of "Swimming_.*" 
ObjectWildCardList ("Swimming_.*", 2); 

BeginOrEndUpdateBlock (FALSE); 
} 

// LINK OBJECT creation -- 
OBJECT.ID Swimming_Links[,]; 
Swimming_Links = 
//Text 
109 : ObjectID (Swimming_T109): 0 : 0 : 0 
110 : ObjectID (Swimming_Tl 10): 0 : 0 : 0 
118: ObjectID ( Swimming_Tl 18 ): 0 : 0 : 0 
// Buttons 
119:0: ObjectID (Swimming_B 119) 
120 : 0 : ObjectID (Swimming_B120) 
121 : 0 : ObjectID ( Swimming_B121) 
122 : 0 : ObjectID ( Swimming_B122) 
123 : 0 : ObjectID (Swimming_B123 ) 
124 : 0 : ObjectID ( Swimming_B124) 
140 : 0 : ObjectID ( Swimming_B 140) 
157 : 0 : ObjectID ( Swimming_B157 ) 
// Edit Boxes 
141: ObjectID (Swimming_T141): ObjectID 
Swimming_T141): 0 :: 
142 : ObjectID (Swimming_T142): ObjectID 

:0 0:. 
:0 0:: 
:0 0:: 
:0 0:: 
:0 0:: 
:0 0:: 
:0 0:: 
:0 0:: 

Swimming_T142): 
143 : ObjectID ( Swimming_T143 ): ObjectID 
Swimming_T143) 

Swimming_T145) 

Swimming_T146): 

0 

0 
144 : ObjectID (Swimming_T144): ObjectID 
Swimming_T144): 0 :: 
145 : ObjectID (Swimming_T145 ): ObjectID 

0 
146 : ObjectID (Swimming_T146): ObjectID 

0 
147 : ObjectID (Swimming_T147 ): ObjectID 
Swimming_T147 ): 0 :: 

(Swimming. 

(Swimming. 

(Swimming. 

(Swimming. 

(Swimming, 

(Swimming. 

(Swimming. 

Update 

Update 

Update 

Update 

Update 

Update 

Update 

ObjectID ( 

ObjectID ( 

ObjectID ( 

ObjectID ( 

ObjectID ( 

ObjectID ( 

ObjectID ( 

20 



148 : ObjectID (Swimming_T148) 
Swimming_T148 ): 0:: 
149 : ObjectID (Swimming_T149) 
Swimming_T149):0:: 
161 : ObjectID (Swimming_T161) 
Swimming_T161): 0 :: 
162 : ObjectID (Swimming_T162) 
Swimming_T162):0:: 
163 : ObjectID ( Swimming_T163 ) 
Swimming_T163 ): 0 :: 
// Dummy 
999 : 0: 0 : 0 : 0; 

ObjectID (SwimmingJJpdate): ObjectID ( 

ObjectID (Swimming_Update): ObjectID ( 

ObjectID ( Swimming_Update): ObjectID ( 

ObjectID ( SwimmingJJpdate): ObjectID ( 

ObjectID ( SwirnmingJJpdate): ObjectID ( 

// Display the dialog box!!!  
OPTCreateDialog ( 

Swimming_Directory : "Swimming.dlg", // Dialog template file, replace this! 
Swimming_Links, // Control Link 
Swimming_InitMacro, // Init Macro 
Swimmingl_TerminateMacro, // Close Macro (note unique prefix!) 
hWndVideo, // Parent window handle 
Swimming_hWndDlg, // handle to the new dialog 
, // Title bar object 
// hMenu 

); 

ChangeCursor (0);      // Make cursor into arrow 

21 


